Exponential Rules

$$
\begin{gathered}
u^{-m}=\frac{1}{u^{m}} \quad \& \quad u^{\frac{m}{n}}=\sqrt[n]{u^{m}} \quad \& \quad u^{0}=1 \\
u^{m} \cdot u^{n}=u^{m+n} \quad \& \quad \frac{u^{m}}{u^{n}}=u^{m-n} \\
\left(u^{m}\right)^{n}=u^{m \cdot n} \\
u^{m} \cdot v^{m}=(u \cdot v)^{m} \\
(-u)^{n}=u^{n} \text { If } \mathrm{n} \text { is even, } \quad(-u)^{n}=-u^{n} \text { if } \mathrm{n} \text { is odd }
\end{gathered}
$$

Negative exponent is called Reciprocal:
Ex.:

$$
5^{-3}=\frac{1}{5^{3}}=\frac{1}{125} \quad x^{-n}=\frac{1}{x^{n}}
$$

Rational and Irrational or Surd:

If the power of the term under the radicand is a multiple of the index then the result is Rational.
Ex.:
$\sqrt[3]{27}=\sqrt[3]{3^{3}}=3^{\frac{3}{3}}=3$
$\sqrt{0.25}=0.5$
$\sqrt[3]{x^{6}}=x^{\frac{6}{3}}=x^{2}$

Otherwise the result is "Irrational or Surd".
Ex.:
$\sqrt{3}$
$\sqrt[3]{4}$
$\frac{2}{\sqrt{5}}$
$\sqrt{\frac{3}{10}}$

Calculating expressions with radicands, it is recommended to not leave the denominators of fractions with radicand, it's more convenient, and comprehensive if rationalized.

Rationalization:
Ex.: Rationalize:
a. $\frac{2}{-\sqrt{5}}$
b. $\sqrt{\frac{3}{10}}$
c. $\frac{2}{\sqrt[3]{7}}$

Solution: multiply both numerator and denominator to denominator:
a. $\frac{2}{-\sqrt{5}}=\frac{-2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=-\frac{2 \sqrt{5}}{5}$
b. $\sqrt{\frac{3}{10}}=\frac{\sqrt{3}}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}}=\frac{\sqrt{30}}{10}$
c. $\frac{2}{\sqrt[3]{7}}=\frac{2}{\sqrt[3]{7}} \times \frac{\sqrt[3]{7^{2}}}{\sqrt[3]{7^{2}}}=\frac{2 \sqrt[3]{7^{2}}}{\sqrt[3]{7^{3}}}=\frac{2 \times 7^{\frac{2}{3}}}{7^{\frac{3}{3}}}=\frac{2 \sqrt[3]{49}}{7}$

If the denominator is 2 terms, then we multiply it by its conjugate.
Ex.:
Rationalize:
a. $\frac{3}{2+\sqrt{5}}$
b. $\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3}}$.

Solution:
a. $\quad \frac{3}{2+\sqrt{5}}=\frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}=\frac{3 \times(2-\sqrt{5})}{4-5}=\frac{6-3 \sqrt{5}}{-1}=3 \sqrt{5}-6$
b. $\quad \frac{\sqrt{2}}{\sqrt{5}-\sqrt{3} .}=\frac{\sqrt{2}}{\sqrt{5}-\sqrt{3} .} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\frac{\sqrt{10}+\sqrt{6}}{2}$

